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Business and Activity Section 
 

(a) Contract Activity  

 

No contract modification was made or proposed in this quarterly period. No materials were pur-

chased during this quarterly period. 

 

(b) Status Update of Past Quarter Activities  

 

Pipeline networks are essential to gather, transport, and distribute gas and hazardous liquid. Oil 

and gas revolution have been held back by aging pipeline infrastructure. Failures of pipeline infra-

structure usually causes loss of life and safety issues that may cost millions of dollars in environ-

mental cleanup, infrastructure repair, property damage, and production loss. Working towards 

achieving full energy independence by using both conventional and unconventional oil and natural 

gas to power our economy. The development and revival of pipeline infrastructure with seamless 

integration of computational algorithms and improved pipeline assessment techniques, and the 

advancement of nondestructive evaluation (NDE) inspection technologies and data analytics helps  

assure next generation pipeline system’s usability, integrity, and safety.  

 

A recent report has identified significant interacting threats and shown that, among many failures 

reported in the past few decades, Loss of Containment (LoC) may appear to have resulted from a 

single cause of an individual threat, but, in reality, has resulted because of circumstances that ag-

gravated the threats [1]. However, characterization of coincident and overlapping defects, due to 

interacting threats has not been well addressed. For example, the interacting nature of the corrosion 

and mechanical damage consisting of a scrape or gouge is still debatable. Thus, a clear definition 
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of coincident damage features and identification of interacting threats is a major existing technical 

gap. Another critical gap is that existing pipeline inspection techniques are designed for specific 

threat conditions and cannot provide a holistic assessment of interactive threats’ impacts, which 

results in large sensor data variance and associated uncertainties, leading to significant difficulties 

in resolving overlapping damage, and thereby affecting integrity management decision adversely. 

A general framework for identification of coincident damage features with better quantification of 

material physical and geometric characteristics will be of critical importance for enhancing pipe-

line assessment methods and models in order to reduces variance.  

 

In this reporting period, the research team performed comprehensive literature review, and made 

great progress toward achieving the technical objectives including: 

(1) Designing methods for hybrid modeling of interacting threats and risk identification: We 

started designing and implementing a computational framework to understand NDE data 

characteristics for pipeline threats. 

(2) Designing an approach for image data segmentation: We implemented a segmentation ap-

proach based on deep learning to segment objects from image data. The approach is cur-

rently evaluated using street view images and will be tested on pipeline threat data in the 

future work. 

(3) Developing methods for characterization and diagnosis of interacting threats: We started 

developing low-variance characterization methods to characterize interacting threats using 

CNN-based deep learning methods. 

The PIs believe that education is a critical component of the CAAP project, and we will integrate 

research with educational activities to prepare the next generation scientists and engineers for the 

gas and pipeline industry. In this reporting period, the research team made great progress toward 

the proposed educational objectives, including (1) involving three PhD students and several unpaid 

master and undergraduate students at Mines and MSU, (2) introducing the application of pipeline 

network inspection as an example in the courses (e.g., CSCI 473/573 Human-Centered Robotics 

at Mines) taught by the PIs, and (3) adapting the research topics from this project with the existing 

undergraduate research program (e.g., the Mines Undergraduate Research Honor Thesis) and MSU 

(e.g., ENSURE program). 

 

(c) Cost Share Activity 

 

PI Zhang used his 11.29% yearly effort as the in-kind cost share to work on the project at the 

Colorado School of Mines. Co-PI Yiming Deng used his 6.07% yearly effort as the in-kind cost 

share to work on the project at the Michigan State University. The cost share was used following 

the approved proposal and no modification was made. 

 

(d) Performed Research: Developing and Evaluating New Methods for Low-Variance Inter-

acting Threats Assessment 

 

1. Background and Objectives in This Period of Performance 
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The key component in managing pipeline safety is threat identification. According to the ASME 

B31.8S standard [2], nine primary threat conditions are identified, which comes under three basic 

categories: 

• Time-Dependent Threats (threats tending to grow over time)  

o Internal corrosion  

o External corrosion  

o Stress corrosion cracking 

• Resident Threats (threats that do not grow over time; instead they tend to act when influ-

enced by another condition or failure mechanism) 

o Manufacturing 

o Fabrication 

o Construction 

• Time independent threats 

o Human error 

o Excavation damage 

o Earth movement, outside force or weather.  

 

Pipeline operators use various methods and programs to prevent, detect, and mitigate and/or in-

spect for individual threats. Additionally, there may be circumstances when two or more threats 

can occur coincidentally and independently of each other. These “coincident threats” result in a 

likelihood of failure greater than that due to either threat individually or merely the superposition 

of the threats. Interactive threats are the merge of two or more defects in a pipe segment, the result 

of which is more damaging than either of the individual threat themselves.  For instance, say after 

applying a neural network algorithm we are estimating the size and shape of the defects. We may 

predict that if the height of the anomaly crosses a certain threshold, it is fatal and requires imme-

diate repair. Below that threshold the defect doesn’t need immediate repair. However, if there are 

several defects which are below that threshold and occur very close to each other then they can be 

combined as a large defect and can prove to be fatal. A matrix can be used to outline the relation-

ship between different pairings of threats and detail the ways in which each particular active com-

bination is managed. Not all boxes in the matrix would include guidance, as many combinations 

of threats are not inherently interactive. A simple representation of this method is demonstrated in 

Figure 1.  

  

A matrix can also be applied to help quantify the synergistic effect in common threat interactions. 

Each operator’s approach to developing a matrix may be different based on historical threats and 

how they have been observed to potentially interact in different parts of its system. To capture 

interactive synergies, many operators use this type of matrix to apply “multiplier” factors to indi-

vidual threat scores where the interaction is expected to exist. Another way of addressing potential 

threat interactions is to analyze and evaluate, generally through probabilistic or deterministic mod-

els, the coincident location of resident features (subcritical imperfections) that are acted upon by 

failure mechanisms, which can compound or magnify the original reduced resistance. This meth-

odology couples the likelihood of a failure mechanism (or combination of failure mechanisms) 

being active and occurring at a resident feature location. A simple representation of this method is 

shown in Figure 2. 
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Due to significant uncertainty associated with different interactive damage types, complex pipe 

materials and external loadings, we propose a multimodal NDE sensing approach with capability 

to inspect multiple low variance interacting threats together with computational modelling for re-

liability evaluation and risk assessment of pipeline infrastructures. Additionally, pipeline integrity 

is time dependent and the associated uncertainty (i.e., damage types, severity) varies with time. 

Accurate uncertainty quantification and propagation analysis is critical for the validity of damage 

prognosis algorithms and health management approaches. Thus, an important requirement of the 

proposed system is to develop adaptive multimodal sensing and quantify its performance.  

 

Several drawbacks of the current state-of-the-art (SOA) [3, 4, 5, 6, 7] are identified, including  

• The existing SOA models cannot model the relationship of multiple threats from different 

categories. 

• Existing models are based upon simple statistical models and thereby are prone to human 

error. 

• Defects are growing continuous with time, and therefore effective data segmentation and 

threat prediction algorithm are required. 

• Due to presence of noise and model uncertainty, it is challenging to estimate the size and 

shape of the defects. 

 

Figure 1: Different potential threat interactions 
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2. Preliminaries 

 

This section describes the preliminaries needed to understand the performed research. 

 

• Mathematical Model 

 

A mathematical model is a quantitative symbolic description of real-world systems. Math-

ematical models are approximations of the real-world.  Here we only include the major 

factors into the models and ignore other factors. A good mathematical model can capture 

the underlying dynamics/rules of the real systems and provide predictions with sufficient 

accuracy. However, the goal is to construct an appropriate model but not an over-compli-

cated or over-simplified one (as shown in Figure 3). 

 

Figure 2: Interactive threat pairing 
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Figure 3: Illustration of overfitting, optimum, and under fitting models 

 

• Risk Identification 

 

Research will focus on identifying risks and developing simulations (e.g., based on finite 

element models and statistical models) to generate heterogeneous In-line Inspection (ILI) 

Nondestructive Evaluation (NDE) data of individual and interacting threats. 

 

• CNN Based Data Characterization 

 

Convoluted Neural Network (CNN) [8] is mostly applied to analyze visual imagery and it 

uses a variation of the multilayer perceptron to minimize feature extraction and prepro-

cessing. CNN is not only a classifier but also a feature extractor. Here after FEM simula-

tions of the defects by using different NDE techniques, we obtain perturbations in the mag-

netic field in X, Y, Z directions in the presence of anomalies. These deformations in mag-

netic fields are treated as images and the CNN is applied on these images for proper char-

acterization and identification of future defects. However, the edge of the damage produces 

smaller deformation than the other damage parts and hence it is challenging to identify the 

edge of damages utilizing CNN. Thus, for better accuracy, long short-term memory (LSTM) 

is used as a secondary classifier. LSTM leverages the spatial structure of the defects in 

making estimates of the damage shape and volume and has been shown to greatly increase 

predictive capabilities of data driven systems. 

 

• Joint Learning 

 

At first, we are performing anomaly detection using sensor output. Then, we are using 

supervised learning methods for defect characterization and reconstruction. For anomaly 

growth and prediction of unknown defects we are using the non-linear model CNN. For 

validation purpose we are dividing our data sets into two parts, the training data and test 

data. The steps of predicting defects are illustrated in Figure 4. 
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Figure 4: Steps involved in prediction of defects 

 

• Supervised Learning 

 

At first supervised learning techniques are to be applied for the identification and estima-

tion of the size and shape of the defects. Due to complex geometry of the pipes it is not 

always possible to perform a visual inspection and moreover the direct inspections are time 

consuming.  Next, with the aid of unsupervised learning algorithms, the shape of defects 

can be classified, and the defect size are estimated for new unknown defects. The initial 

introspection of supervised learning is as follows: 

o Say: we have a set of known defect types. Types can be: 

1) Different sizes. 

2) Different shapes. 

3) Different location. 

o We have inspection measurements from pipes with these defects. 

o For a new pipe with unknown defect but having defect from one of the above cate-

gories how successfully we are recovering the defect category determines the effi-

ciency of the algorithm. 

The principle of supervised learning techniques is illustrated in Figure 5. 

 

For the new unknown defects our goal is to detect the closest category to the new defect.  

This will enable us to approximate the unknown defect size, shape, and location.  After 

extraction of the spatially adaptive features from the magnetic flux leakage (MFL) and 

pulsed eddy current (PEC) data we are feeding them into a classifier. 
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Figure 5: Working principle of supervised learning 

 

 

The CNN model is constructed by one input layer, four convolutional layers, two pooling layers, 

one flatten layer, two dense layers, and a softmax function output layer. The convolutional layer 

can extract spatial features of every input image by the convolution operation, which operates on 

sliding windows of input. Here the images are treated as continuous video sequence which records 

the pipe condition continuously. The later frames are relevant with previous images. LSTM is a 

sequential model, which can learn from previous information by four gates: input gate, forget gate, 

output gate, and cell activation.  In a sequence, the recurrent layer transfers the previous infor-

mation (t-1) to the next (t) learning state. 

 

 

 
Figure 6: Basic Schematic of CNN 
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Figure 7: Basic Schematic of LSTM 

 

3. Progress on Task 1: Hybrid Interacting Threat Modeling and Risk Identification 

 

We will focus on developing computational models to generate and understand the heterogeneous 

In-line Inspection (ILI) data. Individual and interacting threats will be simulated by finite element 

methods (FEM) or statistical models. Finite element refers to the method from which the solution 

is numerically obtained from an arbitrary geometry by breaking it down into simple pieces called 

finite elements. Thus, a large amount of heterogeneous ILI NDE data of individual and interacting 

threats are produced. Individual and interacting defects are simulated based on FEM which is 

achieved via ANSYS Maxwell and COMSOL software. Modeling of finite element analysis sup-

ported by ANSYS and COMSOL is employed to study the relationship between geometric param-

eters and corresponding signals for pipeline defects. In ANSYS Maxwell 3D, the fundamental unit 

of the finite element is a tetrahedron. The Components of a Field that are tangential to the edges 

of an element are explicitly stored at the vertices; components of a field that is tangential to the 

face of an element and normal to an edge is explicitly stored at the midpoint of selected edges; The 

value of a vector field at an interior point is interpolated from the nodal values. To generate data, 

the key step is to first develop a theoretical model such as MFL, EC, or ultrasonic testing (UT) 

tool in motion inside the pipe. The model will adopt three-dimensional FEM of the ILI tool inside 

the pipe geometry. In MFL simulation, a three-dimensional model of cracks is built to explore the 

influence of MFL signal parameters including depth, width, inclination angle, and crack gap, etc. 

In the past, three-axis high-resolution MFL inspection can only detect the defects with a large 

opening. At present, much research work has been done in the field of signal analysis and quanti-

tative analysis of three-axis high-resolution MFL. New MFL tool is designed to generate a field 

of excitation in the circumferential or transverse direction, thus being capable of detecting small 

axial cracks. In PEC, information about the nature, location and severity of a defect is obtained by 

subtracting the ‘no defect’, reference, or background signal from ‘defect’ signal.  
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Figure 8: FEM modelling of PEC 

 

The reference-subtracted signal shows peaks of different magnitudes and opposite polarity with 

the smaller one occurring later in time. The amplitudes of these peaks are affected by the change 

in position of the probe with respect to the defect position. FEM modeling has revealed that, for 

the probe dimensions used in the COMSOL, the maximum signal amplitude would be obtained 

when the outer surface of the pickup coil coincided with the center of the hole. In UT, FEM mod-

eling provides physical insight into the nature of ultrasound/defect interactions and helps us to 

design data for planned ultrasonic tests. More importantly, when it is too difficult or expensive to 

conduct UT in the laboratory, simulation can achieve similar results as well as achieving bench-

mark studies for the validation of defect characterization scheme. ANSYS is a general-purpose 

finite element modeling package for numerically solving a wide variety of mechanical problems. 

These problems include: static/dynamic structural analysis (both linear and non-linear), heat trans-

fer and fluid problems, as well as acoustic and electro-magnetic problems. In general, a finite ele-

ment solution may be broken into the following three stages. This is a general guideline that can 

be used for setting up any finite element analysis. 

• Preprocessing: defining the problem; the major steps in preprocessing are given below: 

o Define key points/lines/areas/volumes 

o Define element type and material/geometric properties 

o Mesh lines/areas/volumes as required 

• The amount of detail required will depend on the dimensionality of the analysis (i.e. 1D, 

2D, axis-symmetric, 3D). 

• Solution: assigning loads, constraints and solving; here we specify the loads (point or pres-

sure), constraints (translational and rotational) and finally solve the resulting set of equa-

tions. 

• Postprocessing: further processing and viewing of the results; in this stage one may wish 

to see: 

o Lists of nodal displacements 

o Element forces and moments 

o Deflection plots 

o Stress contour diagrams 

 

4. Progress on Task 2 – Image Segmentation for Extracting Interacting Threats 

 

Identifying Regions of Interest (ROIs) is essential for threat characterization, since feature extrac-

tion and threat profiling are performed within the ROIs. The existing methods of ROI segmentation 

includes manual selection, thresholding (i.e., selecting pixels with values falling in a certain range 
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to form a region) [9] and simple k-means clustering [10]. Pixel thresholding can result in errors 

and large segmentation noise, and manual and k-means methods cannot provide precise boundary 

and often result in big shape and size variance. Recently, deep learning, including convolutional 

neural networks (CNN) [8], has shown significant improvements on segmenting street views for 

self-driving. However, existing deep segmentation techniques are not directly applicable to solve 

the pipeline threat ROI extraction problem due to the following reasons. (1) Arbitrary threat sizes 

and shapes: Threats of the same type can show difference in size and shape; either big or small-

sized threats can exceed the receptive field of a deep network and cause segmentation errors. (2) 

Co-occurrence of threats in interacting threats scenarios: Existing deep methods usually only con-

sider single scale (e.g., at the pixel level) and lack the capability to incorporate the relationship of 

interacting threats for segmentation. 

 

In this performance period, we started developing a deep network enhanced by a multiscale pool-

ing mechanism to solve interacting threat ROI extraction and address the challenges. The proposed 

multiscale pooling introduces a hierarchy of pooling layers with each layer encoding information 

at a different scale. The coarsest level (at the top of the hierarchy) captures the relationship (i.e., 

co-occurrence) of the threats, and other levels capture the different sizes of threats, with a lower-

level layer (more toward the bottom of the hierarchy) dealing with smaller sized threats. This mul-

tiscale pooling allows for modeling the co-occurrence of interacting threats and allows for model-

ing threats with different sizes. The multiscale pooling mechanism was integrated with CNN as a 

new component to address the challenges of pipeline threat segmentation. 

 

The segmentation approach was implemented and initially tested on street view image data that 

was collected in the downtown of Golden near the campus of the Colorado School of Mines. We 

illustrate the preliminary results of the approach on street view images in Figure 9. It is observed 

a satisfactory segmentation was achieved, such that the city sign, sky, road, buildings, and vehicles 

are separated. Future research on this task will focus on adapting this approach to specifically 

address ROI extraction for interacting threats. 

 

 

 
Figure 9: ROI segmentation results over street view images in preliminary experiments 

 

5. Progress on Task 3 – Interacting Threats Characterization Assisted by Hybrid Models 

 

This research will focus on characterizing individual and interacting threats by combining robust 

signal processing and characterization algorithms with a finite element model, and Convolutional 
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Neural Network (CNN)-based methods for threat diagnosis. Here by performing MFL and PEC 

simulations on ANSYS, we have witnessed the perturbation of magnetic field in the presence of 

different interactive defects and these defects are further characterized by machine learning algo-

rithms. Specifically, CNN and supervised learning to estimate the location and severity of threats 

in the pipe. Here sophisticated threat characterization approaches are implemented that compen-

sate for tool velocity, pipe grade, stress, pipe wall thickness and remnant magnetization, in order 

to provide a full profile of threats in the pipe wall. We will evaluate multiple candidate character-

ization approaches, based on neural network approach using CNN and LSTM and thereby select-

ing the method with lowest variance. To reduce the dimensionality of the data we will be using 

principal component analysis (PCA) which will serve as a feature extraction algorithm. We are 

dealing with images here but since the dimensionality of the data is high we are using PCA for 

feature extraction. Given a set of points in Euclidian space, the first principal component corre-

sponds to a line that passes through the multidimensional mean and minimizes the sum of squares 

of the distances of the points from the line. The second principal component corresponds to the 

same concept after all correlation with the first principal component has been subtracted from the 

points. The singular values (in Σ) are the square roots of the eigenvalues of the matrix XTX. Each 

eigenvalue is proportional to the portion of the variance (more correctly of the sum of the squared 

distances of the points from their multidimensional mean) that is associated with each eigenvector. 

The sum of all the eigenvalues is equal to the sum of the squared distances of the points from their 

multidimensional mean. PCA essentially rotates the set of points around their mean to align with 

the principal components. This moves as much of the variance as possible (using an orthogonal 

transformation) into the first few dimensions. The values in the remaining dimensions, therefore, 

tend to be small and may be dropped with minimal loss of information. Hence PCA serves both 

data compression and invariance. In supervised learning, defect detection is basically a data clas-

sification problem to classify and characterize the defects. Here we have a known set of defect 

types, then for an unknown defect we have to predict in which category it will fall. 

 

 
Figure 10: Framework of the proposed CNN-based automated threat diagnosis system 

 

From the FEM simulations we have received the perturbation of magnetic field in the presence of 

defects like the above figure. From there, we know the location of the defects. To characterize the 

defects by their shapes and volumes we are passing these FEM figures as a collection of images 

and videos in CNN and LSTM (for edge detection) code developed in MATLAB, thereby predict-

ing the accuracy of their characterization. 

 

In simulation, material definition, boundary conditions, excitation, analysis, and solution setup 

should be thoroughly studied and predefined. For instance, boundary conditions that guide the 

behavior of the magnetic field at the interfaces or the edges of the problem region. It needs to be 

Task 3: Interacting Threats Characterization 
Assisted by Hybrid Computational Models

13

• Research will focus on characterizing individual and interacting 
threats by combining robust signal processing and characterization 
algorithms with a finite element model, and Convolutional Neural 
Network (CNN)-based methods for threat diagnosis

Framework of the proposed CNN-based automated threat diagnosis system
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selected from three types of boundary: the natural boundary is adopted for the boundaries on the 

interface between objects. 𝐻 field is continuous across the boundary; Neumann boundary condi-

tion is set up for exterior boundaries of solution domain. 𝐻 field is tangential to the boundary and 

flux cannot cross it; The last one is the insulating layer condition, it is as Neumann except that 

current cannot cross the boundary. It is very useful to insulate two conductors which are in contact 

with each other. All the parameters must be considered so that calculations at each adaptive pass 

satisfy convergence criterion. This enables us to determine the permissible change in output quan-

tity in percentile and evaluate output quantity at each adaptive pass. On the other hand, appropriate 

meshing in simulation is extremely important. The software uses the Finite Element Method (FEM) 

to solve Maxwell’s equations. To obtain the set of algebraic equations to be solved, the geometry 

of the problem is discretized automatically into basic building blocks (e.g., tetrahedra in 3D). The 

assembly of all tetrahedra is referred to as the finite element mesh of the model or simply the mesh. 

Mesh plays an important role in accuracy of the computed results and thus requires higher mesh 

resolution in regions where field fields are of interest rapidly. Generally, mesh operation is imple-

mented on all solids (model Objects) in the geometry automatically before the solution process is 

started. In Maxwell’s Static Solvers, the mesh is automatically refined to achieve the required level 

of accuracy in field computation. This is referred as adaptive mesh refinement. For most of the 

cases, initial mesh is very coarse and close to uniform in size throughout the region. To achieve 

required level of accuracy in results, this mesh needs to be refined in areas where fields are of 

interest or the field gradients are high. Since adaptive meshing provides automated mesh refine-

ment capability based on reported energy error in simulation, it is only available with static solvers. 

Therefore, to achieve higher accuracy, mesh operations shall be utilized.  

 

 

 
Figure 11: Characterization of defects 

 

 

6. Summary and Future Work 

 

In this period of performance, we reviewed the literature on methods to address interacting threats, 

and made great progress on developing methods for hybrid modeling of interacting threats and risk 

identification, deep learning based image data segmentation, and characterization and diagnosis of 

interacting threats. This research on predictive interacting threat assessment based on deep graph 

learning enables the missing capability to assess interacting threats with low variance. This re-

search will result in reducing or avoiding the need for time-consuming manual model construction 

for interacting threat assessment, and establish a crucial body of knowledge of interacting threat 
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properties and the knowledge needed to facilitate future design of interacting threat assessment 

models and standards. 

 

In the next quarter, we continue making progress and completing the research tasks including het-

erogeneous modeling and deep learning based image segmentation, following the project schedule 

included in the approved proposal. We will also construct our mathematical models using the NDE 

data. Here we have used finite element modelling to simulate the defect models and then feed them 

to classification algorithms such as CNN and LSTM so that we can predict the shape and size of 

interactive threats with better accuracy. To promote education, we will continue involving PhD, 

Master’s, and undergraduate students from our research group in the project, and advise them to 

improve their research skills as the project continues.  
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